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LE'lTER TO THE EDITOR 

Is there a glassy phase in two dimensions? 

Asher Baramt and David KutasovJ: 
t Department of Atmospheric Optics, Soreq Nuclear Research Center, Yavne 70600, Israel 
$ Department of Physics, Weizmann Institute of Science, Rehovot 76100, Israel 

Received 22 May 1989, in final form 11 July 1989 

Abstract. The lattice gas model is studied as a function of dimensionality by a combination 
of analytical and numerical techniques. It is shown that for d =z 2 the order-disorder 
transition density p, is higher than the maximal filling density for a random filling process 
p F ,  while for d 3 3, p,> pc. The existence of a disordered metastable phase with p > pc is 
discussed in view of these results. 

Phase transitions are often described by simple lattice models, whose main advantage 
is mathematical tractability. These models are chosen so that they share with the 
physical system the basic symmetries; the hope is that such models will fall into the 
same universality class (in the sense of renormalisation group) as the system to be 
described, so that results obtained in the lattice model (for universal quantities) can 
be carried over to the physical system. 

Hard core lattice gas models are simple systems with Ising-like variables, which 
are believed to describe the solid-fluid transition [ 13. Indeed, there is considerable 
evidence suggesting that the structure of the solid and fluid phases is determined 
primarily by the short-range repulsive intermolecular forces. The long-range attractive 
component is relatively weak and can be treated as a perturbation [2]. 

The model is defined by the Hamiltonian 

with si = 0, the Hamiltonian (1) for empty (occupied) sites i on a d-dimensional lattice, 
i,j running over all nearest-neighbour pairs on the lattice, and p + 00. The system 
described by the partition function at density p :  

with p related to p by ( l /N) a In Z/ap = p, undergoes a phase transition from a 
(disordered) fluid to a (ordered) solid one at a critical density pc which depends on 
the dimension d, type of lattice and interaction range. 

Lattice gas models appear in another context under the name of random sequential 
adsorption (RSA) models. The latter are irreversible dynamical models: particles are 
adsorbed at random at the sites of a lattice until no additional particles can be added. 
The density at which this happens is denoted by pr. There are many one-, two- and 
three-dimensional systems which realise this process [3]. These models have been 
studied by several authors [4]. 
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In this letter we will discuss the relation between pr and p,. Our physical motivation 
for this is related to the glass phase. It is known that a fluid ( T > Tc), can be quenched 
(to T < T,) to form a metastable phase which is fluid-like (disordered) despite the low 
temperature. In our model the analogue of temperature is density. Low density 
corresponds to high temperature. As p grows and approaches the closest packing 
density, the equivalent temperature tends to zero. The solid-fluid transition at T =  T, 
is described by the order-disorder transition at p = p,. The quenching procedure can 
be described by the RSA process. This assumption is intuitively reasonable but certainly 
not rigorous. The RSA phase is a disordered phase for all values of p for which it 
exists ( p  < pr). Therefore whenever pr> pc ,  we can obtain by the RSA process a glassy 
phase. If p r < p c ,  this is impossible, at least in this framework. We will find that for 
d < 3 the latter relation holds, so that there is no glassy phase. There are two possible 
responses to such a situation. One is that for low dimensions the above framework is 
simply not appropriate to describing the metastable phase. The second (more intuitive) 
is to conclude that this phase does not exist below three dimensions. 

The densities pr and pc depend on the details of the lattice and interactions. Even 
the order of the transition may change as a function of the range of the interaction. 
However, from an examination of pr,  pc for several cases, it seems that the main 
conclusions above are quite universal. 

To establish the above results we proceed in three steps. First, we consider d = 1. 
The fluid phase extends in this case up to? pc= 1. The one-dimensional RSA models 
have maximal coverage densities depending on the interaction, from 0.864 66 . . . for 
nearest-neighbour exclusion to 0.7476 . . . for hard rods [4]. Thus, for d = 1, pc> pr 
for all models. 

Next we consider the opposite limit of large d. First simplicity we confine the 
discussion to the cubic lattice; the generalisation to other cases is simple. 

We have shown recently [5] that the maximal coverage of the RSA process is well 
approximated in this case by (in this part we use absolute p ) :  

In 2d 
Pr(d) (3) 

For d 3 2 the error in the estimate (3) is less than 5%.  The convergence to the asymptotic 
limit (3) is extremely fast. We still need an estimate for p , ( d ) ,  which can be obtained 
in the following way$. The d-dimensional cubic lattice can be divided into two 
sublattices A, B, so that the Hamiltonian (1) takes the form 

where 

and the sum over j runs over the 2d nearest neighbours of the site i E A. 
The order parameter of this lattice gas system is m = p A  - p B .  We would like to 

estimate the maximal p = p A  + p B  for which m = 0. The assumption we make to simplify 
things is that the d different directions on the lattice effectively decouple for large d, 

t All densities are in units of closest packing unless stated otherwise. 
$ Actually, we will obtain an upper bound on p E  which becomes exact at large d. 
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or in more practical terms we assume that the sitesj in (5) (which are nearest neighbours 
of i), satisfy (sfsf)  = ( p ” ) ’  ( j  # k ) .  This assumption is essentially equivalent to the 
one made in [ 5 ] .  The good agreement with numerical results there as well as heuristic 
arguments are its main justifications. 

The main advantage of X ( 5 )  is its narrow statistics. Since s’ = s, it is obvious that 
if p B  = p” then the standard deviation is v” = J p B ( l  - p B ) .  X A  is an average over 2d 
independent (by assumption) s and therefore, in the limit of large d we have ,ux = p” 
and ax = J p B ( l  - p B ) / 2 d  or 

For large d, p B  << 1 near the transition point (see below). and therefore p x / u x  = J@. 
By (4), X A  serves as a background for s A .  For 2dp”< 1, the X distribution is wide 
by (6)), and there is no problem in having p A  = p”. Consider, however, the region 
2dpB >> 1. The X variable becomes then ‘classical’-its fluctuations are small. The 
( s A )  average can then be estimated by (s f )  = P(sf = 1) = P ( X f  = 0), where the last 
equality holds because p +CO. P(Xf = 0) is given by [ l  - P ( s ”  = l)]2d. Of course, 
P(s” = 1) = p B ,  so that finally p A  = (1 - P ” ) ~ ~ .  The disordered phase with p A  = p B  can 
exist only up to the critical density 

Po = (1 - Po)2d. (7) 

Increasing p B  above po necessarily creates a non-zero m: p A  cannot follow p” because 
of the relation between them, and the distribution of X is much narrower than the 
difference m. The fluctuations of X are too small to change these ‘classical’ conclusions. 
Thus we get an upper limit on p c :  

PCG Po(d ) .  (8) 

For large d, equation (7) has the form exp(-2dpo) = p o ,  which has the solution 

1 
2d 

po=- (In 2d -In In 2 d + .  , .). (9) 

Several remarks concerning (9) are in order. 2dp0 = In 2d for large d, thus the distribu- 
tion of X (6) is indeed narrow and the approximation leading to (8) is justified, so 
the procedure is at least self-consistent. We expect (8) to break as d becomes small. 
Numerically we find that it holds for d 3 3. For very large d, the inequality ( 8 )  becomes 
an equality. The meaning of ‘very large’ in this context is that In 2d >> 1, so that the 
asymptotic result sets in at much higher dimensions than in the corresponding RSA 

problem [ 5 ] .  Equation (9) has a form curiously similar to the RSA result (3), although 
the two were obtained from completely orthogonal arguments. The difference between 
the two has negative sign (so that p c s p 0 < p r ) ;  it becomes negligible at large enough 
d, for which pr and pc coincide. 

To summarise, we found that contrary to the d = 1 case, for d + co the inequality 
is p c < p r .  There have to be one or more points where the two densities cross. The 
third step in the argument is establishing that this crossover occurs at 2 < d < 3.  This 
was checked numerically for several lattices. The results for pr were obtained by the 
graphical series method of [5] and MC simulations, and compared with known results 
for pc [l, 6 ,  71. The results are presented in table 1. 
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Table 1. Values of p c  and p r  for several different models. 

Model d P C  Pr 

SLI 

SL2 

SL3 

TL 1 

TL2 
TL3 
TL4 

H D  

sc 
BCC 
FCC 

sc 

2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
4 

0.736 (2 )  

0.30 (2) 
0 .829. .  . 
0.684 (15) 
0.80 (3)  
0.79 (2) 
0.76 (1) 
0.426 (10) 
0.354 (10) 
0.48 (2 )  
0.30 (3)  

>0.92 
0.7282 (1) 
0.7480 (6) 
0.6985 (10) 
0.6939 (5) 
0.5965 (10) 
0.6692 (1 5) 
0.5655 (10) 
0.603 (1) 
0.608 (1) 
0.594 (1) 
0.628 (4) 
0.528 (2) 

In table 1 different models on the same lattice are denoted by the range of the 
interaction. The abbreviations are : SL = square, TL = triangular, H D  = hard discs, sc = 
simple cubic etc. Note that the HD model is a continuum one. The x i  model is the 
hard hexagon model on the triangular lattice with nearest-neighbour exclusion, which 
has been exactly solved by Baxter [6]. The numbers in parentheses denote the 
uncertainties in the last digits. In all cases, for d = 2 pc> pr while for d = 3 pr> p,, 
although the nature (order) of the transition is diflerent in different cases. At this stage 
it is natural to ask what is the origin of the universality we find. We do not know, but 
there are several ways to think about this problem which might help. The first? is that 
the nature of the ordered phase is peculiar in two dimension [8,9]. For example, the 
XY model [lo] exhibits an infinite correlation length for all T < T,. Making the analogy 
to our context, this would seem to mean that there are long correlations for p > p c ,  
which would make the existence of a disordered phslse as the RSA phase impossible. 
Note also the universality of the behaviour of pc,  pr discussed above. The estimates 
(3), (8), (9) can be easily extended to other lattices and interactions, with essentially 
the same formulae. Thus for example pc+ pr from below as d -+CO. The issue of 
universality will be discussed elsewhere [ 111. 
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